avatar

二手车交易价格预测-建模调参

学习目标


  1. 线性回归模型:
    • 线性回归对于特征的要求;
    • 处理长尾分布;
    • 理解线性回归模型;
  2. 模型性能验证:
    • 评价函数与目标函数;
    • 交叉验证方法;
    • 留一验证方法;
    • 针对时间序列问题的验证;
    • 绘制学习率曲线;
    • 绘制验证曲线;
  3. 嵌入式特征选择:
    • Lasso回归;
    • Ridge回归;
    • 决策树;
  4. 模型对比:
    • 常用线性模型;
    • 常用非线性模型;
  5. 模型调参:
    • 贪心调参方法;
    • 网格调参方法;
    • 贝叶斯调参方法;

代码示例


读取数据

1
2
3
4
import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings('ignore')
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# reduce_mem_usage 函数通过调整数据类型,帮助我们减少数据在内存中占用的空间
def reduce_mem_usage(df):
""" iterate through all the columns of a dataframe and modify the data type
to reduce memory usage.
"""
start_mem = df.memory_usage().sum()
print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))

for col in df.columns:
col_type = df[col].dtype

if col_type != object:
c_min = df[col].min()
c_max = df[col].max()
if str(col_type)[:3] == 'int':
if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
df[col] = df[col].astype(np.int8)
elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
df[col] = df[col].astype(np.int16)
elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
df[col] = df[col].astype(np.int32)
elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
df[col] = df[col].astype(np.int64)
else:
if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
df[col] = df[col].astype(np.float16)
elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
df[col] = df[col].astype(np.float32)
else:
df[col] = df[col].astype(np.float64)
else:
df[col] = df[col].astype('category')

end_mem = df.memory_usage().sum()
print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))
print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))
return df
1
sample_feature = reduce_mem_usage(pd.read_csv('data_for_tree.csv'))

1
continuous_feature_names = [x for x in sample_feature.columns if x not in ['price','brand','model','brand']]

线性回归 & 五折交叉验证 & 模拟真实业务情况

1
2
3
4
5
6
sample_feature = sample_feature.dropna().replace('-', 0).reset_index(drop=True)
sample_feature['notRepairedDamage'] = sample_feature['notRepairedDamage'].astype(np.float32)
train = sample_feature[continuous_feature_names + ['price']]

train_X = train[continuous_feature_names]
train_y = train['price']

简单建模

1
2
3
4
from sklearn.linear_model import LinearRegression

model = LinearRegression(normalize=True)
model = model.fit(train_X, train_y)
1
2
3
4
# 查看训练的线性回归模型的截距(intercept)与权重(coef)
'intercept:'+ str(model.intercept_)

sorted(dict(zip(continuous_feature_names, model.coef_)).items(), key=lambda x:x[1], reverse=True)

1
2
3
from matplotlib import pyplot as plt

subsample_index = np.random.randint(low=0, high=len(train_y), size=50)
1
2
3
4
5
6
7
8
9
10
# 绘制特征v_9的值与标签的散点图
# 图片发现模型的预测结果(蓝色点)与真实标签(黑色点)的分布差异较大
# 且部分预测值出现了小于0的情况,说明我们的模型存在一些问题
plt.scatter(train_X['v_9'][subsample_index], train_y[subsample_index], color='black')
plt.scatter(train_X['v_9'][subsample_index], model.predict(train_X.loc[subsample_index]), color='blue')
plt.xlabel('v_9')
plt.ylabel('price')
plt.legend(['True Price','Predicted Price'],loc='upper right')
print('The predicted price is obvious different from true price')
plt.show()

1
2
3
4
5
6
7
8
9
# 通过作图我们发现数据的标签(price)呈现长尾分布,不利于我们的建模预测。
# 原因是很多模型都假设数据误差项符合正态分布,而长尾分布的数据违背了这一假设。
import seaborn as sns
print('It is clear to see the price shows a typical exponential distribution')
plt.figure(figsize=(15,5))
plt.subplot(1,2,1)
sns.distplot(train_y)
plt.subplot(1,2,2)
sns.distplot(train_y[train_y < np.quantile(train_y, 0.9)])

Author: WJZheng
Link: https://wellenzheng.github.io/2020/03/31/%E4%BA%8C%E6%89%8B%E8%BD%A6%E4%BA%A4%E6%98%93%E4%BB%B7%E6%A0%BC%E9%A2%84%E6%B5%8B-%E5%BB%BA%E6%A8%A1%E8%B0%83%E5%8F%82/
Copyright Notice: All articles in this blog are licensed under CC BY-NC-SA 4.0 unless stating additionally.

Comment